
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 43, NO. 5, MAY 1995 1187

Rigorous and Numerically Efficient Computation
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Abstract-For the modal analysis of complex gyrotron cavities,
complete sets of eigenfunctions of the corresponding completely

shielded cavity are required. In this contribution, it is shown that
the generalized scattering matrix method which is well-known

for the computation of the resonance modes can also be applied

to the calculation of the irrotationat electric and magnetic eigen-
functions. The irrotational eigenfunctions are computed for some

circularly symmetrical structures. The vtildity of the method
is checked by investigating a spherical cavity for which the

analytical solution is known. Furthermore, a special subdivision

of tapered cavity sections is preseuted which considerably im-
proves the numerical efficiency of the method. For a standard
gyrotron cavity, the field in the source region is computed with

and without making use of irrotational electric eigenfunctions. It
is demonstrated that the accuracy and the numerical efficiency

of the modal expansion of the cavity field in the source region is

improved if these eigenfunctions are included in the analysis.

I. INTRODUCTION

I N A gyrotron, the interaction between the electron beam

and the electromagnetic field takes place in a rotationally

symmetrical open cavity resonator. Nowadays, complex cavi-

ties which consist of cascaded line sections, steps, and tapers,

see Fig. 1, are mostly used ([1], [2]). To simulate the operation

of a gyrotron, an accurate representation of the electromagnetic

field inside the cavity is required.

In [3] and [4], it has been demonstrated that for the modal

expansion of the electromagnetic field inside open cavities

the eigenfunctions of the corresponding completely shielded

cavity can be used: By the application of the equivalence

principle [5], the apertures of an open cavity can be short-

circuited if the nonvanishing tangential electric field there is

replaced by two surface magnetic currents at both sides of the

short circuit, which are equal in magnitude and opposite in

direction. Then, the electromagnetic field inside the cavity is

expanded with respect to the complete set of the solenoidal and

irrotational eigenfunctions of the corresponding completely

shielded resonator [6].
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Fig. 1. Longitudinal sectionof a complexcavity.

One must keep in mind that the divergence-free resonance

modes are not sufficient for the modal analysis. The irro-

tational magnetic eigenfunctions are mandatory due to the

surface magnetic currents at the apertures of the cavity [7].

Consequently, the magnetic field is expanded in terms of

the solenoidal magnetic eigenfunctions H~ which are the

magnetic fields of the resonance modes and the irrotational

magnetic eigenfunctions Gn which do not correspond to

physical modes [6]

m cc

H= ~c.H. +x dnGn.

n n

On the other hand, the electric field can either be expanded

with respect to the solenoidal electric eigenfunctions J!7~ and

the irrotational electric eigenfunctions F.

co cc

E = ~ a.E. + ~ b.Fn

n n

or it can be written in terms of the solenoidal electric eigen-

functions only if J represents a well-behaved current density.

w
J

E=~zmE%– —

n
jw&cl

(keeping in mind that the term E + J/jLLJEo is divergence-

free.) Note that the expansion coefficients an and Em which

correspond to the first and second expansion, respectively,

have to be distinguished. Assuming that all solenoidal electric

eigenfunctions En are normalized to the same energy Wo, i.e.,
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one arrives at

where Pn which represents the excitation of the eigenfunction

En by the electric current density J is given by

The quantities k. and k. denote the resonance wavenumber of

the nth solenoidal cavity mode and the free space wavenum-

ber, respectively. For kn >> ko, the expansion coefficients

a. and ?& are proportional to the terms (kg /k~) P. and P~,

respectively, which leads to a much faster convergence of the

first expansion than that of the second one. Consequently,

regarding accuracy and numerical efficiency the modal ex-

pansion in terms of the solenoidal electric eigenfunctions

only is inferior to that with respect to the complete set of

electric eigenfunctions. Only if very smooth current density

distributions are considered for which the excitation integrals

Pn decrease rapidly with increasing resonance wavenumbers

kn one would rather use the second expansion because it does

not require the irrotational electric eigenfunctions.

Only for a few cavities the eigenfunctions can be derived

analytically. Much work has already been done to calculate

the resonance modes of a wide variety of structures. Usually,

cavities which can be regarded as a waveguide with axially

varying cross section can be subdivided into cascaded ho-

mogeneous waveguide sections which are separated by step

discontinuities [8], [9]. For each individual step discontinuity

the generalized scattering matrix [10] is computed by the appli-

cation of, e.g., the mode-matching procedure. Subsequently, all

scattering matrices are cascaded to obtain the overall scattering

matrix. Short-circuiting the structure at two terminal planes

leads to the resonance condition from which the resonance

wavenumbers and the electromagnetic fields are determined.

In this contribution, this procedure which is well-known for

the resonance modes is transfemed to the determination of the

irrotational eigenfunctions which can be derived in terms of

a potential function satisfying the Helmholtz equation. Hence,

the computation of these modes is to some extent similar to

the calculation of the resonance modes. But one has to bear

in mind that contrary to the resonance modes no magnetic

(electric) field is related to the irrotational electric (magnetic)

eigenfunctions. Furthermore, for the computation of the irrota-

tional magnetic eigenfunctions. the so-called “TEOO waveguide

mode” has to be taken into account. This mode is characterized

by a transversely constant axial magnetic field only and is not

included in the computation of the resonance modes.

A detailed discussion of the computation of the irrotational

magnetic eigenfunctions in complex gyrotron cavities is given

in [7]. Therefore, we concentrate on the irrotational electric

eigenfunctions in this contribution. Although the computation

of both types of irrotational eigenfunctions is similar to a

certain extent one has to keep in mind that their roles in the

analysis of open cavities clearly have to be distinguished.

In [7], it has been demonstrated that the irrotational mag-

netic eigenfunctions are mandatory for the modal analysis

of open cavities if the eigenfunctions of the corresponding

completely shielded cavity are used as expansion functions.

To illustrate this, an analytic example has been discussed in

detail in [7]. On the other hand, the irrotational electric eigen-

functions are not a must for the modal analysis. Nevertheless,

it will be shown in this paper that in general the accuracy

and the numerical efficiency of the modal expansion method

can considerably be improved by including the irrotational

electric eigenfunctions in the analysis. For this purpose, a

cavity containing an electric current source is analyzed with

and without making use of the electric eigenfunctions.

II. THEORY

The irrotational electric eigenfunctions are defined by

F. = Vp. , (la)

v2!On +P:pn =0, (lb)

pn=Oon S, (lC)

where S and ii denote the surface of the completely shielded

cavity and the outward directed unit vector normal to S,

respectively. The quantities pn are the eigenvalues of these

modes. However, one has to keep in mind that these eigenval-

ues do not have the meaning of resonance frequencies because

the irrotational eigenfunctions do not represent physical elec-

tric fields which satisfy the wave equations. They satisfy the

boundary conditions only.

We concentrate on the analysis of a simple waveguide step

as being the essential part of the whole structure, see Fig. 2.

(Note that tapers can be seen as cascaded step discontinuities.)

For p(u) (v = 1, 2) we can use an expansion in terms of the

corresponding waveguide modes. In the uth line section, the

potential p(”) corresponding to the eigenvalue p (the index n

has been dropped) can then be written as

p)
z ~(u).—

P
z? > (2a)

(($))2 =pz - (ky)’, (2b)

where

{z‘v) for v = 1(~)+ = %c~
b(u) for v = 2 ‘

(v)- =

{

b(”) for v = 1
c~

at”) for v = 2 “z

(z~)

(2d)

The function e~) denotes the axial electric field of the ith TM

mode in the vth waveguide and is defined by

(~) 2 (~) =0,V~e$) + (Iii ) ezz (3a)

e(u) – (I on the waveguide walls, (3b)
Zz —

where Vt and k~V) are the transverse part of the del operator

and the mode cutoff wavenumber, respectively. Equation (3b)
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TABLE I
COMPARISONBETWEEN TFIE NORMALIZED EIGENVALUESOF SOME IRROTATIONAL ELECTRIC EIGENFUNCTIONSOF A

SPHERICAL CAVITY THAT CORRESPONDTO THE THEORY OF SPHERICAL FUNCTIONSAND TO THE METHOD PRESENTED

Mode Foil FOIZ F013 F031 FM,, FWI FZ,I Fl,, Fe,l

Taper analysis 4.494 7.727 10.907 6.988 9.355 11.654 11.659 11.658 11.657

Exact vatue 4.493 7.725 10.904 6.988 9.356 11.657

/,,,~,,,,,/

A

n

//////

Zo z

Fig. 2. Step discontinuity in a waveguide.

guarantees that the boundary condition (lc) is satisfied on the

waveguide walls.

Matching the fields at both sides of the discontinuity yields

{

~(1) _ p(z) on S(2)—
o

(4a)
on S(l) – 5’(2) ‘

(4b)

The continuity of both the potential and its normal derivative

at S(2) is necessary in order to render the left-hand side of (lb)

free from Dirac delta functions. Making use of the orthogonal

properties of e$~) [6], one gets

&) _ b(2) = [A](a(l) – /$1)), (5a)

~(1) + ~(l) = [B](a(p) + 6(2)), (5b)

where the elements of the matrices [1?] and [A] are given by

the coupling integrals

~,j = L[l) kjz)
/

~(l)e(2) ds, (5C)
,9(2) “ ‘3

A .=_p:l) B,,

j% (5d)
p ‘“

respectively. The quantities a(”) and b(V) denote column

vectors containing the expansion coefficients a,(V) and &’)
>

respectively. Equations (5a) and (5b) can be rearranged in

scattering matrix notations, although we do not consider an

ordinary scattering problem

[H
~(l)

1[ 1
[sol)][s(12)]fJ(l)

~(2) = [s(2’)] [s(22)] J2) ,
(6a)

where the submatrices [S(V~) ] are given by

[s(22)] = ([q - [A][I?])-’ ([I] + [A][~]), (6b)

[s(21)] = -2([1] - [A][13])-’[A], (6c)

[W)] = [l?]([I] + [s(22)]), (6d)
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Fig. 3. Transverse and axial components of an irrotational electric eigen-
function at a waveguide step according to Fig. 2. The solid and the dashed
lines correspond to waveguide 1 and 2, respectively.

[s(”)] = -([q - [B])[sq. (6e)

If we consider now a complex structure composed of a

number of line sections separated by step discontinuities, the

scattering matrices corresponding to the different parts of the

structure can be cascaded resulting in the overall scattering

matrix of the whole structure which is denoted by [S]. The

application of the boundary condition

@) = _a(~) (7)

at the short-circuited apertures S(”) (the terminal planes) leads

to the “resonance condition”

det ([1]+ [~]) = O. (8)

From this relation, the eigenvalues Pn (and subsequently the

field distribution) can be determined.

In [7], it has been shown that for the computation of

the irrotational magnetic eigenfunctions the “TEOO waveguide

mode” [11] has to be included. This mode corresponds to the

constant term in a Fourier series. On the other hand, due to

the boundary condition (3b) a “TMoo waveguide mode” does

not exist. Note that this does not contradict the completeness

‘“) do not vanish inof the set {e:)} because generally the eZ~

the mean.

III. NUMERICAL RESULTS

Computer codes for the calculation of irrotational eigen-

functions of complex circular waveguide cavities have been
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Fig. 4. Contour lines of the potentials which correspond to the irrotational

electric eigenfunctions of a conducting hemisphere. The contour is approxi-
mated by five tapers.

Fig. 5. Longitudhal section of a conical cavity,

developed. These codes can actually handle cavities which

consist of cascaded line sections, step discontinuities and

tapers. The number of steps into which each taper is subdi-

vided, the spatial resolution which is given by the number of

waveguide eigenfunctions, the number of evanescent modes

which are taken into account for the interaction between

adjacent steps, and the circumferential variations in the fields

are input parameters. Output parameters are the eigenvalues

and the contour lines of the potentials corresponding to the

irrotational eigenfunctions.

In order to validate the numerical results the continuity

of the transverse and the axial components of an irrotational

electric eigenfunction is checked at a waveguide step. Fig. 3

presents the corresponding field distributions. Apart from the

strong oscillations due to the field singularities at the 90°

edge of the step [12], the field distributions corresponding to

waveguide 1 (solid lines) and waveguide 2 (dashed lines) are

Fig. 6. Contour lines of the potentials which correspond to the azimuthally

independent irrotational electric eigenfunctions with the lowest eigenvalues
of a conical cavity according to Fig. 5. The taper is subdivided into 2, 4, 8,
16, 32, and 64 steps. Parameters: al = 1 mm, az = 4 mm, L1 = 1 mm,

L2=3mm, L3=l mm.

TABLE II

NORMALIZED EIGENVALUESOFTHE EIGENFUNCTIONSACCORDINGTO FIG. 6

lNumberofsteps I 2 / 4 I 8 I 16 \ 32 I 64 It ,
Elgenvalue 1.291 1.256 1.235 1.225 1.219 1.216

Relative mm-time I 0.022 I 0.056 I 0.120 I 0.248 \ 0.493 I 1.000

well-matched throughout the common cross-section of both

waveguides.

To subject the method to a further check a conducting hemi-

sphere is investigated. The eigenvalues of this structure are

identical to those of a spherical cavity which show electric wall

symmetry in the equatorial plane. In Appendix A it is shown

how the eigenvalues of the it-rotational electric eigenfunctions

of a conducting sphere are calculated using spherical functions.

On the other hand, a sphere can be considered as a tapered

circular waveguide. For a proper approximation of the contour,

five tapers which are subdivided into apropiate numbers of

steps are used. Tapers with different smoothnesses (i.e. number

of steps per unit length) are necessary because of the wide

range of taper slope characterizing a hemisphere as a taper.

Near the poles, the slope is very small while near the equator

it is very large. In Table I, the normalized eigenvalues of some

spherical irrotational electric eigenfunctions are compared with

the corresponding results of the taper analysis; and in Fig. 4

the contour lines of the corresponding potentials are given.

The agreement between the results is excellent. Due to the

rotational symmetry of the structure, it is sufficient to look
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Fig. 7. Contour lines of the potentials that correspond to the azimuthally
independent irrotational electric eigenfunctions with the six lowest eigenvalues

of a conical cavity accordhrg to Fig. 5. The taper is subdivided into 64 steps.
Parameters: as in Fig. 6.

TABLE III
COMPARISONOFTHE NORMALIZED EIGENVALUESAND CPU-TIMES THAT

CORRESPONDTO THE LINEAR AND THE GEOMETRIC SUBDIVISION OF A

CONCAL CAVITY ACCORDING TO FIG. 5. PARAMETERS: AS IN FIG. 6

Azimuthal

order

o

2

10

E1.genvalue I Speed-up I Cpu-time I

Gender Steps Linear Geometric factor in s

F 2 1.291 1.303 1.7 2.4

4 1.256 1.257 1.6 5.4

8 1.235 1.235 1.6 12.6

16 1.225 1.225 1.7 23.9

32 1.219 1.219 1.7 48.1

I 64 I 1.216 ] 1.216 I 1.6 I 97.0 I

64 1.903 1.905 6.9 90.3

F 2 I 4.039 I 3.897 8.6 4.9

I 64 I 4.126 I 4.130 I 9.2 I 140.3 I

at its upper half. According to the boundary condition ( lc),

the contour lines have to be parallel to the boundary of the

cavity. This is in good agreement with the plots. Although

the contour lines give a good idea of the field structure, one

has to keep in mind that they are not the field lines. The

field lines are in fact normal to the contour lines everywhere.

AA
● I

I r I
Fig. 8. Contour lines of the potentials that correspond to the irrotational elec-
tric eigenfunctions with the lowest eigenvalues of a conical cavity according
to Fig. 5. The first, second, and third row of illustrations correspond to an
azimuthal order of O, 2, and 10, respectively, whereas the left and the right
column correspond to the lineur and the geometric subdivision of the taper
(16 steps). Parameters: as in Fig. 6.

Note that the taper analysis also yields the degeneracy of the

F071, FZ71, Fb71, and F671 modes, which is predicted by the

theory of spherical functions.

Tapers are treated as cascaded steps, which may lead to

huge computational requirements. Consequently, the number

of steps should not be chosen larger than necessary. Fig. 5

shows the longitudinal section of a 45° conical cavity. For this

structure, the influence of the number of steps into which the

cone is subdivided on the eigenvalues, the field distributions,

and the cpu-time is studied.

In Fig. 6 the contour lines of the potentials which correspond

to the azimuthally independent irrotational electric eigenfunc-

tions with the lowest eigenvalues for subdivisions of the cone

into 2, 4, 8, 16, 32, and 64 steps are presented. Apart from

the field in the immediate vicinity of the stepped boundary

of the cone, the contour lines do not change significantly

for subdivisions with more than 8 steps. This conclusion is

confirmed by Table II in which the corresponding normalized

eigenvalues and the relative cpu-times (the subdivision into 64

steps corresponds to 100’ZO)are given. The difference between

the eigenvalues which correspond to the subdivisions of the

taper into 64 and 8 steps amounts only to 1.6%. On the other

hand, the structure with 8 steps requires only 12% of the

cpu-time needed for a subdivision of the taper into 64 steps.

For the expansion of the electromagnetic field with respect

to a complete set of eigenfunctions, one has to compute quite

a large number of irrotational electric eigenfunctions up to a
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Fig. 9. Contour lines of the potentials that correspond to some azimuthally

independent irrotational electric eigenfunctions of a complex gyrotron cavity.

a 3— .—

Fig. 10. Longitudinal section of a standard gyrotron cavity.

certain maximum eigenvalue pn. Fig. 7 shows the contour lines

of the potentials corresponding to the azimuthally independent

irrotational electric eigenfunctions with the 6 lowest eigenval-

ues of the conical cavity shown in Fig. 5. Since only the first 6

eigenfunctions are calculated one can afford to subdivide the

taper into 64 steps. Nevertheless, the computation of a whole

set of eigenfunctions takes a lot of numerical efforts even

if the number of steps is reduced. Therefore a considerable

enhancement of the numerical efficiency of the method is

discussed in the following.

In Appendix B it is shown that in a circular waveguide

system, the coupling matrix [El] of (5c) is a function of the

ratio of the radii at both sides of a circular waveguide step

only. Hence if a taper is subdivided such that this ratio is kept

constant the same coupling matrix can be used for all steps

which drastically reduces the computational requirements of

the method [13]. This kind of subdivision is called geometric

subdivision in contrast to a subdivision with equidistant steps

which is denoted by linear subdivision. In Table III and in

Fig. 8, the two subdivisions are compared for the conical

cavity of Fig. 5. The eigenvalues corresponding to both

subdivisions converge to each other.

Fig. 11. Contour lines of the potentials that correspond to some azimuthatly
independent irrotational magnetic eigenfunctions of the standard gyrotron

cavity shown in Fig. 10.

Fig. 12. Contour lines of the potentials that correspond to some irrotational

magnetic eigenfunctions of the standaxd gyrotron cavity shown in Fig. 10,
which show a second order azimuthal field variation.

The speed-up factor is defined as the ratio of the cpu-times

required by the two subdivisions. For azimuthally independent
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Fig. 13. Profiles of the transverse component of the electric field and the corresponding electric current density along the axis of a standard gyrotron cavity

ac~ording to Fig. 10. The solid and the dashed lines correspond to modal exp-ansion~ with and without irrotation~l electric eigenfunction~~ respectively.

Parameters: al = 1.74 mm, aZ = 2 mm, a3 = 1.54 mm, L1 = 1.5 mm, L2 = 3 mm, L3 = 2 mm, ~ = 191 GHz.

fields, the speed-up factor amounts only to about 1.7. This

can be explained by the fast computation of the zero’th

order Bessel functions so that the computation of the cou-

pling matrices takes only little time. On the other hand, if

higher order circumferential field variations are considered

the speed-up factor increases significantly, it is about 10

for eigenfunctions with an azimuthal order of 10, which

can be put down to the computation of the higher order

Bessel functions because these functions are implemented

as recurrence formulas. This feature makes the geometric

subdivision especially attractive for whispering gallery fields

which have recently been suggested for gyrotron operation.

The absolute cpu-times which are necessary for the compu-

tation of one eigenfunction assuming that the tapered section

is geometrically subdivided are also given in Table III. The

computer code has been implemented on a Convex C3840

vector computer, where vectorized NAG routines are used as

far as possible. The computation of one eigenfunction of a

cavity which is subdivided into 64 steps, which in general

may belong to different tapers, requires about 2 minutes cpu-

time. In a field expansion method, typically 100 eigenfunctions

are needed which amounts to a total cpu-time of 200 minutes,

which is quite high. But one has to keep in mind that once these

eigenfunctions are computed for a cavity they can be stored

and may serve as expansion functions for many applications.

Three azimuthally independent irrotational electric eigen-

functions of the complex gyrotron cavity shown in Fig. 1

are presented in Fig. 9. The cavity consists of one step

discontinuity and three tapered sections which are subdivided

into 3, 5, and 32 steps. The computation of each of the

eigenfunctions takes about 1 minute cpu-time.

In Figs. 11 and 12, the contour lines of the potentials corre-

sponding to some irrotational magnetic eigenfunctions of the

standard gyrotron cavity shown in Fig. 10 are presented. The

eigenfunctions shown in Fig. 11 are azimuthally independent

whereas a second order azimuthal field variation is assumed

in Fig. 12. The tapered sections are geometrically subdivided

into 24 and 32 steps. According to the boundary condition

for irrotational magnetic eigenfunctions [7], the contour lines

have to be orthogonal to the boundary of the cavity which is in

good agreement with the plots. Note that the contour lines of

the eigenfunctions presented in the first two plots of Fig. [11]

are approximately vertical. Consequently, the axial magnetic

field is approximately constant throughout the cross section of

the cavity. This illustrates that it is necessary to take the “TEOO

waveguide mode” into account in each individual line section.

Finally, the modal expansions with and without irrotational

electric eigenfunctions are compared for the standard gyrotron

cavity which is excited by an impressed electric current

density. For the sake of simplicity, it is assumed that the

current density is given by an azimuthally independent radial

component J@ only. In this case, an azimuthally independent

TM field is excited. In the transverse direction, the current

density distribution is assumed to be proportional to a Gaussian

distribution with a standard deviation of 30% of the diameter

az; whereas the corresponding axial dependence is given by a

half sine wave. According to Fig. 13, three cases with different

lengthes of the current density distributions are investigated.

In all cases, the amplitude of the current density is chosen so

that the total current is kept constant.

Fig. 13 also presents the distributions of the transverse

component of the electric field EP along the axis of the cavity,

which correspond to the three current density distributions. The

solid and the dashed lines correspond to the modal expan-

sions with and without the irrotational electric eigenfunctions,

respectively. Both expansions are carried out with the same

spatial resolution. For a smooth current density distribution,

as in the first case of Fig. 13, the agreement between the

two expansions is excellent. On the other hand, as the current

density distribution becomes more impulsive (as presented in
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the second and third case of Fig. 13) the expansion without

irrotational electric eigenfunctions is characterized by strong

oscillations in the vicinity of the source (Gibbs phenomenon)

whereas the expansion including these eigenfunctions is still

well-behaved.

IV. CONCLUSION

The irrotational electric and magnetic eigenfunctions of

complex cavities have been calculated based on the subdi-

vision of the structure into cascaded step discontinuities. In a

circular waveguide system, it has been demonstrated that the

geometric subdivision of taper sections leads to a numerically

efficient formulation. For several cavities, numerical results

have been presented. The validity of the computer code

has been illustrated for a spherical cavity. Moreover, it has

been shown for a standard gyrotron cavity that the accuracy

and the numerical efficiency of the modal expansion of the

cavity field is improved by including the irrotational electric

eigenfunctions in the analysis.

APPENDIX A

The resonance modes of a spherical cavity are well-known

[5]. Modes which are either TE or TM to the radial coordinate

r can be derived from the radial component c~~~ of an electric

or magnetic vector potential, respectively, which is given by

&rm, = ~n(knq7’)P:(cos ’29){%3} ‘A1)
where ~n (kr) and Pnm (COS0) denote the spherical Bessel

function according to

~n(knqr)= d%’Jn+(l/2)(knqr) (A2)

and the associated Legendre function of the first kind. The

quantity k.q is the resonance wavenumber. The radial com-

ponent of both, the electric and the magnetic vector potential

satisfy the differential equation

(mw = ~(v’ + k:q) y (A3)

Since the potential pmn~ corresponding to an irrotational

electric eigenfunction fulfills the Helmholtz equation, p~~q

and ~mn~ are related by

‘&lrlq
Vmnq = ~. (A4)

Due to the boundary condition (1 c), the eigenvalues p~q of

p~~~ are given by the characteristic equation

~n(pn~a) = O (A5)

where a denotes the radius of the conducting sphere. Note that

the eigenvalues of a conducting sphere are identical to those of

the resonance modes which are TE to r. In [5], some normal-

ized eigenvalues qnPa are given. A corresponding statement

for the irrotational magnetic eigenfunctions is however not

valid. In [7], it is demonstrated that the eigenvalues of these

eigenfunctions have to be distinguished from the resonance

wavenumbers of modes which are TM to r.

APPENDIX B

The waveguide eigenfunctions e~) are orthonormalized

according to

(Bl)

which leads to

in a circular waveguide system. The superscripts “c” and “s”

distinguish the cosine and the sine polarized eigenfunctions

(with respect to the azimuthal component of the transverse

electric field), respectively. For Pi = O, only the sine pohtr-

ization exists. The quantity XPt ,q, denotes the qith zero of JP%

which is different from zero. The quantity r(u) represents the

radius of the vth line section. Note that the normalizing factor

N:: } which is given by

{
—{–}

1 – (5Pto
N::}= 2 1 1

1

~ XPZ ,q% J;t (XP.,q.
‘-

(B3)

is not a function of T(V).

Since waveguide eigenfunctions with different azimuthal

orders (p, # Pj ) are decoupled it is convenient to define

p=pt=pJ. Substituting (B2) into the coupling integral

of (5c) yields

The coupling integral is only a function of the ratio r(z) /r(l).

Hence the same coupling matrix [B] can be used throughout a

taper if the taper is subdivided so that the ratio of the radii at

each step is kept constant. This kind of subdivision is denoted

by geometric subdivision.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

REFERENCES

E. Jensen and K. Schnnemann, “Potentials of complex cavities for

efficiency enhancement of gyrotrons,” in 9th Int. Confi Infrared and
Millimeter Wa\,es, Takarazuka, Japan, 1984, pp. 288-289.
0. Dumbrajs and E. Bone, “A complex cavity with mode conversion
for gyrotrons,” Int J. Electron,, vol. 65, pp. 285–295, 1988.
Y. Y. Tsai and A. S. Omar, “Field theoretical treatment of H-plane
waveguide junctions with anisotropic medium,” IEEE Trans. Microwave
Theory Tech., vol. MTT-41 , pp. 274-281, 1993,
A. Jostingmeier and A. S. Omar, “Analysis of inhomogeneously filled
cavities coupled to waveguides using the VIE formulation.” IEEE Trans.

Microwave Theory Tech., vol. MTT-41, pp. 1’207-1’214, 1993.
R. F. Barrington, Time-Harmonic Elect~omagnetLc Fields. New York
McGraw-Hill, 1961.
R. E. Collin, Foundations for Microwave Engineering. New York

McGraw-Hill, 1966.
A. Jostingmeier, C. Rieckmann, and A. S. Omar, “Computation of the
wrotational magnetic eigenfunctions belonging to complex cavities,”
IEEE Trans. Microwave Theory Tech., vol. MTT-42, pp. 2285–2293,
1994.



JOSTINGMEIER etal.: IRROTATIONAL ELECTRIC AND MAGNETIC EIGENFUNCTIONS OF COMPLEX GYROTRON CAVITIES 1195

[8]

[9]

[10]

[11]

[12]

[13]

H. Flitgel and E. Kiihn, “Computer-aided anafysis and design of circular

waveguide tapers; IEEE Trans. Microwave Theory Tech., vol. MTT-36,

pp. 332-336, 1988.
J. M. Neilson, P. E. Latham, M. Caplan, and W. G. Lawson, “De-

termination of the resonant frequencies in a complex cavity using the
scattering matrix formulation,” IEEE Trans. Microwave Theory Tech.,
VOL MTT-37, pp. 1165–1 169, 1989.
T. Itoh, “Generalized scattering matrix technique,” in Numerical Tech-
niques for Microwave and Millimeter- Wave Passive Structures. New

York Wiley, 1989, pp. 622-636.
A. S. Omar, A. Jostingmeier, and C. Rieckmann, ‘{Application of the

GSD technique to the analysis of slot-coupled waveguides,” IEEE Trans.

Microwave Theory Tech., vol. MTT-42, pp. 2139-2148, 1994.
R. E. Collin, Field Theory of Guided Waves. New York: IEEE Press,

1991.
A. Jostingmeier, C. Rieckmann, and A. S. Omar, “Numerically efficient
taper analysis with controlled resolution,” in Proc. IEEE Mfi-S Symp.,

Atlanta, GA, 1993, pp. 995-996.

Andreas Jostingmeier was born in Bielefeld, Ger-

many, on May 25, 1961. He received the Dipl.-Ing.

degree in electrical engineering from the Technische

Universifat Braunschweig, Germany, in 1987, and

the Doktor-Ing. degree from the Technische Uni-

versifat Hamburg-Harburg, Germany, in 1991.

From 1987–199 1 he worked as a research assis-

tant at the Technische Uriversitat Hamburg-Harburg
, ,:.: where he was involved in the investigation of dl-
.: :

electric resonators. Since 1991 he has been with the
Institut fur Hochfrequenztechnik at the Technische

Universitat Braunschweig as a research assistant. His current fields of research
are concerned with numerical methods for microwave and millimeter-wave
structures and high-power millimeter-wave tubes.

Christian R1eckmann was born in Hamburg, Germany, on May 16, 1968. He

received the Dipl.-Ing. degree in electrical engineering from the Technische

Universitat Hamburg-Harburg, Germany, in 1993.
Since 1993 he has been with the Arbeitsbereich fur Hochfrequenztechnik

at the Technische Universitat Hamburg-Harburg as a research assistant. His
current fields of research are concerned electromagnetic field theory and
high-power generation.

A. S. Omar (M’87–SM’89), for a photograph and biography, see p. 944 of

the June 1991 issue of this TRANSACTIONS.


