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Rigorous and Numerically Efficient Computation
of the Irrotational Electric and Magnetic
Eigenfunctions of Complex
Gyrotron Cavities

Andreas Jostingmeier, Christian Rieckmann, and A. S. Omar, Senior Member, IEEE

Abstract—For the modal analysis of complex gyrotron cavities,
complete sets of eigenfunctions of the corresponding completely
shielded cavity are required. In this contribution, it is shown that
the generalized scattering matrix method which is well-known
for the computation of the resonance modes can also be applied
to the calculation of the irrotational electric and magnetic eigen-
functions. The irrotational eigenfunctions are computed for some
circularly symmetrical structures. The validity of the method
is checked by investigating a spherical cavity for which the
analytical solution is known. Furthermore, a special subdivision
of tapered cavity sections is presented which considerably im-
proves the numerical efficiency of the method. For a standard
gyrotron cavity, the field in the source region is computed with
and without making use of irrotational electric eigenfunctions. It
is demonstrated that the accuracy and the numerical efficiency
of the modal expansion of the cavity field in the source region is
improved if these eigenfunctions are included in the analysis.

1. INTRODUCTION

N A gyrotron, the interaction between the electron beam

and the electromagnetic field takes place in a rotationally
symmetrical open cavity resonator. Nowadays, complex cavi-
ties which consist of cascaded line sections, steps, and tapers,
see Fig. 1, are mostly used ([1], [2]). To simulate the operation
of a gyrotron, an accurate representation of the electromagnetic
field inside the cavity is required.

In [3] and [4], it has been demonstrated that for the modal
expansion of the electromagnetic field inside open cavities
the eigenfunctions of the corresponding completely shielded
cavity can be used: By the application of the equivalence
principle [5], the apertures of an open cavity can be short-
circuited if the nonvanishing tangential electric field there is
replaced by two surface magnetic currents at both sides of the
short circuit, which are equal in magnitude and opposite in
direction. Then, the electromagnetic field inside the cavity is
expanded with respect to the complete set of the solenoidal and
irrotational eigenfunctions of the corresponding completely
shielded resonator [6].
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Fig. 1. Longitudinal section of a complex cavity.

One must keep in mind that the divergence-free resonance
modes are not sufficient for the modal analysis. The irro-
tational magnetic eigenfunctions are mandatory due to the
surface magnetic currents at the apertures of the cavity [7].
Consequently, the magnetic field is expanded in terms of
the solenoidal magnetic eigenfunctions H,, which are the
magnetic fields of the resonance modes and the irrotational
magnetic eigenfunctions G,, which do not correspond to
physical modes [6]

H= iann + i dnGy,.

On the other hand, the electric field can either be expanded
with respect to the solenoidal electric eigenfunctions E,, and
the irrotational electric eigenfunctions F,,

or it can be written in terms of the solenoidal electric eigen-
functions only if J represents a well-behaved current density.

e Sam,

Jweo

(keeping in mind that the term E + J/jweg is divergence-
free.) Note that the expansion coefficients a,, and @, which
correspond to the first and second expansion, respectively,
have to be distinguished. Assuming that all solenoidal electric
eigenfunctions F,, are normalized to the same energy Wy, i.e.,

8—0/ B> dV = W,
2 Jv
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one arrives at
2
ky

Oy X =P,
i
ap X 5P
where F,, which represents the excitation of the eigenfunction
E,, by the electric current density J is given by

Pn:/ I E-dv.
g

The quantities %,, and k¢ denote the resonance wavenumber of
the nth solenoidal cavity mode and the free space wavenum-
ber, respectively. For k,, > kg, the expansion coefficients
a, and @, are proportional to the terms (k2/k2)P, and P,,
respectively, which leads to a much faster convergence of the
first expansion than that of the second one. Consequently,
regarding accuracy and numerical efficiency the modal ex-
pansion in terms of the solenoidal electric eigenfunctions
only is inferior to that with respect to the complete set of
electric eigenfunctions. Only if very smooth current density
distributions are considered for which the excitation integrals
P,, decrease rapidly with increasing resonance wavenumbers
k», one would rather use the second expansion because it does
not require the irrotational electric eigenfunctions.

Only for a few cavities the eigenfunctions can be derived
analytically. Much work has already been done to calculate
the resonance modes of a wide variety of structures. Usually,
cavities which can be regarded as a waveguide with axially
varying cross section can be subdivided into cascaded ho-
mogeneous waveguide sections which are separated by step
discontinuities [8], [9]. For each individual step discontinuity
the generalized scattering matrix [10] is computed by the appli-
cation of, e.g., the mode-matching procedure. Subsequently, all
scattering matrices are cascaded to obtain the overall scattering
matrix. Short-circuiting the structure at two terminal planes
leads to the resonance condition from which the resonance
wavenumbers and the electromagnetic fields are determined.

In this contribution, this procedure which is well-known for
the resonance modes is transferred to the determination of the
irrotational eigenfunctions which can be derived in terms of
a potential function satisfying the Helmholtz equation. Hence,
the computation of these modes is to some extent similar to
the calculation of the resonance modes. But one has to bear
in mind that contrary to the resonance modes no magnetic
(electric) field is related to the irrotational electric (magnetic)
eigenfunctions. Furthermore, for the computation of the irrota-
tional magnetic eigenfunctions. the so-called “TEqy waveguide
mode” has to be taken into account. This mode is characterized
by a transversely constant axial magnetic field only and is not
included in the computation of the resonance modes.

A detailed discussion of the computation of the irrotational
magnetic eigenfunctions in complex gyrotron cavities is given
in [7]. Therefore, we concentrate on the irrotational electric
eigenfunctions in this contribution. Although the computation
of both types of irrotational eigenfunctions is similar to a
certain extent one has to keep in mind that their roles in the
analysis of open cavities clearly have to be distinguished.
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In [7], it has been demonstrated that the irrotational mag-
netic eigenfunctions are mandatory for the modal analysis
of open cavities if the eigenfunctions of the corresponding
completely shielded cavity are used as expansion functions.
To illustrate this, an analytic example has been discussed in
detail in [7]. On the other hand, the irrotational electric eigen-
functions are not a must for the modal analysis. Nevertheless,
it will be shown in this paper that in general the accuracy
and the numerical efficiency of the modal expansion method
can considerably be improved by including the irrotational
electric eigenfunctions in the analysis. For this purpose, a
cavity containing an electric current source is analyzed with
and without making use of the electric eigenfunctions.

II. THEORY

The irrotational electric eigenfunctions are defined by

F, =Vy,, (la)
V¢, + piipn =0, (1b)
wn =00n5, (1c)

where § and 7 denote the surface of the completely shielded
cavity and the outward directed unit vector normal to S,
respectively. The quantities p,, are the eigenvalues of these
modes. However, one has to keep in mind that these eigenval-
ues do not have the meaning of resonance frequencies because
the irrotational eigenfunctions do not represent physical elec-
tric fields which satisfy the wave equations. They satisfy the
boundary conditions only.

We concentrate on the analysis of a simple waveguide step
as being the essential part of the whole structure, see Fig. 2.
(Note that tapers can be seen as cascaded step discontinuities.)
For ¢(*) (v = 1, 2) we can use an expansion in terms of the
corresponding waveguide modes. In the vth line section, the
potential () corresponding to the eigenvalue p (the index n
has been dropped) can then be written as

(o]

o) = Z(cf"”e—fﬂf”’(z-zv) 4 (i (e x0)y

2

k(l’) »
: "‘Tegj, (2a)
(B2 =p* — (k)2 (2b)
where
()
w+ _ ) a; forv=1
T { b fory =2 (2e)
)
(v)— b forv=1
C; = 2 . 2d
: { az(”) forv =2 )

The function ei’;) denotes the axial electric field of the ¢th TM
mode in the vth waveguide and is defined by

Viel) + (k7)) =0,
o)

(3a)

=0 on the waveguide walls, (3b)

where V, and kf”) are the transverse part of the del operator
and the mode cutoff wavenumber, respectively. Equation (3b)



JOSTINGMEIER et al.: IRROTATIONAL ELECTRIC AND MAGNETIC EIGENFUNCTIONS OF COMPLEX GYROTRON CAVITIES

1189

TABLE 1
COMPARISON BETWEEN THE NORMALIZED EIGENVALUES OF SOME IRROTATIONAL ELECTRIC EIGENFUNCTIONS OF A
SPHERICAL CAVITY THAT CORRESPOND TO THE THEORY OF SPHERICAL FUNCTIONS AND TO THE METHOD PRESENTED

MOde Foll FDIZ F013 F031 F051 Fl071 F271 F471 F671
Taper analysis | 4.494 | 7.727 | 10.907 | 6.988 | 9.355 | 11.654 | 11.659 | 11.658 | 11.657
Exact value | 4.493 | 7.725 | 10.904 | 6.988 | 9.356 11.657
A h
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Fig. 2. Step discontinuity in a waveguide.

guarantees that the boundary condition (1c) is satisfied on the
waveguide walls.
Matching the fields at both sides of the discontinuity yields

(2) 2)

v _Je on S

v { 0 on S — 52”° (4a)
7] 7]

Z o= 2,2 2

8Z<p 82('0 on S/, (4b)

The continuity of both the potential and its normal derivative
at @ is necessary in order to render the left-hand side of (1b)
free from Dirac delta functions. Making use of the orthogonal
properties of eg';) [6], one gets
a® _p® = [A](a®) — b(l)),
oM + 8P =[B](a® +b@),

(5a)
(5b)

where the elements of the matrices [B] and [A] are given by
the coupling integrals

B, =tk / Vel ds, (5¢)
S{2)
g
A]i = - (2) Bij’ (Sd)
B

respectively. The quantities a® and b*) denote column
vectors containing the expansion coeffficients af”) and bg"),
respectively. Equations (5a) and (5b) can be rearranged in
scattering matrix notations, although we do not consider an
ordinary scattering problem

(1) (1n 12)17 [aMW
[2(2)} = Hg(m% %2(22)” [a@)]’ (6a)
where the submatrices [S(“#)] are given by
[SED) = (U] - [A)[B) (U] + [4][B]),  (6b)
[SCV] = —2([1] - [A][B]) (Al (60)
[SU2] =[B]([1] + [$®2)), (6d)
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Fig. 3. Transverse and axial components of an irrotational electric eigen-
function at a waveguide step according to Fig. 2. The solid and the dashed
lines correspond to waveguide 1 and 2, respectively.

[SUV] = —([1] - [B))[SEV]. (6e)

If we consider now a complex structure composed of a
number of line sections separated by step discontinuities, the
scattering matrices corresponding to the different parts of the
structure can be cascaded resulting in the overall scattering

matrix of the whole structure which is denoted by [S]. The
application of the boundary condition

b = g (7

at the short-circuited apertures S (the terminal planes) leads
to the “resonance condition”

det ([I] + [S]) = 0. 8)

From this relation, the eigenvalues p, (and subsequently the
field distribution) can be determined.

In [7], it has been shown that for the computation of
the irrotational magnetic eigenfunctions the “TEqy waveguide
mode” [11] has to be included. This mode corresponds to the
constant term in a Fourier series. On the other hand, due to
the boundary condition (3b) a “TMgo waveguide mode” does
not exist. Note that this does not contradict the completeness
of the set {eg’;)} because generally the ei’g) do not vanish in
the mean.

III. NUMERICAL RESULTS

Computer codes for the calculation of irrotational eigen-
functions of complex circular waveguide cavities have been
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Fig. 4. Contour lines of the potentials which correspond to the irrotational
electric eigenfunctions of a conducting hemisphere. The contour is approxi-
mated by five tapers.
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Fig. 5. Longitudinal section of a conical cavity.

developed. These codes can actually handle cavities which
consist of cascaded line sections, step discontinuities and
tapers. The number of steps into which each taper is subdi-
vided, the spatial resolution which is given by the number of
waveguide eigenfunctions, the number of evanescent modes
which are taken into account for the interaction between
adjacent steps, and the circumferential variations in the fields
are input parameters. Output parameters are the eigenvalues
and the contour lines of the potentials corresponding to the
irrotational eigenfunctions.

In order to validate the numerical results the continuity
of the transverse and the axial components of an irrotational
electric eigenfunction is checked at a waveguide step. Fig. 3
presents the corresponding field distributions. Apart from the
strong oscillations due to the field singularities at the 90°
edge of the step [12], the field distributions corresponding to
waveguide 1 (solid lines) and waveguide 2 (dashed lines) are
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Fig. 6. Contour lines of the potentials which correspond to the azimuthally
independent irrotational electric eigenfunctions with the lowest eigenvalues
of a conical cavity according to Fig. 5. The taper is subdivided into 2, 4, 8,
16, 32, and 64 steps. Parameters: a1 = 1 mm, a3 = 4 mm, L; = 1 mm,
Lg:Smm,Lg:lmm. -

TABLE II
NORMALIZED EIGENVALUES OF THE EIGENFUNCTIONS ACCORDING TO FIG. 6

Number of steps 2 4 8 16 32 64
1.291 | 1.256 | 1.235 | 1.225 | 1.219 | 1.216
0.022 | 0.056 | 0.120 | 0.248 | 0.493 | 1.000

Eigenvalue

Relative cpu-time

well-matched throughout the common cross-section of both
waveguides.

To subject the method to a further check a conducting hemi-
sphere is investigated. The eigenvalues of this structure are
identical to those of a spherical cavity which show electric wall
symmetry in the equatorial plane. In Appendix A it is shown
how the eigenvalues of the irrotational electric eigenfunctions
of a conducting sphere are calculated using spherical functions.
On the other hand, a sphere can be considered as a tapered
circular waveguide. For a proper approximation of the contour,
five tapers which are subdivided into apropiate numbers of
steps are used. Tapers with different smoothnesses (i.e. number
of steps per unit length) are necessary because of the wide
range of taper slope characterizing a hemisphere as a taper.
Near the poles, the slope is very small while near the equator
it is very large. In Table I, the normalized eigenvalues of some
spherical irrotational electric eigenfunctions are compared with
the corresponding results of the taper analysis; and in Fig. 4
the contour lines of the corresponding potentials are given.
The agreement between the results is excellent. Due to the
rotational symmetry of the structure, it is sufficient to look



- JOSTINGMEIER et al.: IRROTATIONAL ELECTRIC AND MAGNETIC EIGENFUNCTIONS OF COMPLEX GYROTRON CAVITIES

([ a2
Fig. 7. Contour lines of the potentials that correspond to the azimuthally
independent irrotational electric eigenfunctions with the six lowest eigenvalues

of a conical cavity according to Fig. 5. The taper is subdivided into 64 steps.
Parameters: as in Fig. 6.

TABLE 1II
COMPARISON OF THE NORMALIZED EIGENVALUES AND CPU-TIMES THAT
CORRESPOND TO THE LINEAR AND THE GEOMETRIC SUBDIVISION OF A
ConicaL CAVITY ACCORDING TO FIG. 5. PARAMETERS: AS IN FIG. 6

Azimuthal Eigenvalue Speed-up | Cpu-time

order Gender | Steps | Linear | Geometric | factor ins
0 F 2]1.291 |1.303 1.7 2.4
4]1.256 | 1.257 1.6 5.4

8]1.235 |1.235 1.6 12.6

16 {1.225 |1.225 - 1.7 23.9

3211219 (1.219 1.7 48.1

64 | 1.216 . | 1.216 1.6 97.0

2 F 212026 |1.910 5.1 3.8
411961 |1.980 6.1 6.8

811.932 | 1.942 6.7 12.5

16 | 1.916 | 1.922 6.8 24.5

32| 1.908 | 1911 6.9 45.8

64 | 1.903 | 1.905 6.9 90.3

10 F 2 14.039 |3.897 8.6 4.9
4.186 | 4.088 9.9 8.9

814166 |4.179 10.1 17.5

16 | 4.145 | 4.159 9.5 35.3

32 14.133 | 4.141 1 92 70.6

64 | 4.126 | 4.130 9.2 140.3

at its upper half. According to the boundary condition (1c),
the contour lines have to be parallel to the boundary of the
cavity. This is in good agreement with the plots. Although
the contour lines give a good idea of the field structure, one
has to keep in mind that they are not the field lines. The
field lines are in fact normal to the contour lines everywhere.
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Fig. 8. Contour lines of the potentials that correspond to the irrotational elec-
tric eigenfunctions with the lowest eigenvalues of a conical cavity according
to Fig. 5. The first, second, and third row of illustrations correspond to an
azimuthal order of 0, 2, and 10, respectively, whereas the left and the right
column correspond to the linear and the geometric subdivision of the taper
(16 steps). Parameters: as in Fig. 6.

Note that the taper analysis also yields the degeneracy of the
Fori, Forq, Fyrq, and Fgy; modes, which is predicted by the
theory of spherical functions. '

Tapers are treated as cascaded steps, which may lead to
huge computational requirements. Consequently, the number
of steps should not be chosen larger than necessary. Fig. 5
shows the longitudinal section of a 45° conical cavity. For this
structure, the influence of the number of steps into which the
cone is subdivided on the eigenvalues, the field distributions,
and the cpu-time is studied.

In Fig. 6 the contour lines of the potentials which correspond
to the azimuthally independent irrotational electric eigenfunc-
tions with the lowest eigenvalues for subdivisions of the cone
into 2, 4, 8, 16, 32, and 64 steps are presented. Apart from
the field in the immediate vicinity of the stepped boundary
of the cone, the contour lines do not change significantly
for subdivisions with more than 8 steps. This conclusion is
confirmed by Table II in which the corresponding normalized
eigenvalues and the relative cpu-times (the subdivision into 64
steps corresponds to 100%) are given. The difference between
the eigenvalues which correspond to the subdivisions of the
taper into 64 and 8 steps amounts only to 1.6%. On the other
hand, the structure with 8 steps requires only 12% of the
cpu-time needed for a subdivision of the taper into 64 steps.

For the expansion of the electromagnetic field with respect
to a complete set of eigenfunctions, one has to compute quite
a large number of irrotational electric eigenfunctions up to a
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Fig. 9. Contour lines of the potentials that correspond to some azimuthally
independent irrotational electric eigenfunctions of a complex gyrotron cavity.
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Fig. 10. Longitudinal section of a standard gyrotron cavity.

certain maximum eigenvalue p,,. Fig. 7 shows the contour lines
of the potentials corresponding to the azimuthally independent
irrotational electric eigenfunctions with the 6 lowest eigenval-
ues of the conical cavity shown in Fig. 5. Since only the first 6
eigenfunctions are calculated one can afford to subdivide the
taper into 64 steps. Nevertheless, the computation of a whole
set of eigenfunctions takes a lot of numerical efforts even
if the number of steps is reduced. Therefore a considerable
enhancement of the numerical efficiency of the method is
discussed in the following.

In Appendix B it is shown that in a circular waveguide
system, the coupling matrix [B] of (5¢) is a function of the
ratio of the radii at both sides of a circular waveguide step
only. Hence if a taper is subdivided such that this ratio is kept
constant the same coupling matrix can be used for all steps
which drastically reduces the computational requirements of
the method [13]. This kind of subdivision is called geometric
subdivision in contrast to a subdivision with equidistant steps
which is denoted by linear subdivision. In Table III and in
Fig. 8, the two subdivisions are compared for the conical
cavity of Fig. 5. The eigenvalues corresponding to both
subdivisions converge to each other.
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Fig. 11. Contour lines of the potentials that correspond to some azimuthally
independent irrotational magnetic eigenfunctions of the standard gyrotron
cavity shown in Fig. 10.

(«(((((4-))’»»))

Fig. 12. Contour lines of the potentials that correspond to some irrotational
magnetic eigenfunctions of the standard gyrotron cavity shown in Fig. 10,
which show a second order azimuthal field variation.

The speed-up factor is defined as the ratio of the cpu-times
required by the two subdivisions. For azimuthally independent
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Fig. 13. Profiles of the transverse component of the electric ficld and the corresponding electric current density along the axis of a standard gyrotron cavity
according to Fig. 10. The solid and the dashed lines correspond to modal expansions with and without irrotational electric eigenfunctions, respectively.
Parameters: a; = 1.74 mm, ag = 2 mm, a3 = 1.54 mm, Ly = 1.5 mm, Ly = 3 mm, L3 = 2 mm, f = 191 GHz.

fields, the speed-up factor amounts only to about 1.7. This
can be explained by the fast computation of the zero’th
order Bessel functions so that the computation of the cou-
pling matrices takes only little time. On the other hand, if
higher order circumferential field variations are considered
the speed-up factor increases significantly, it is about 10
for eigenfunctions with an azimuthal order of 10, which
can be put down to the computation of the higher order
Bessel functions because these functions are implemented
as recurrence formulas. This feature makes the geometric
subdivision especially attractive for whispering gallery fields
which have recently been suggested for gyrotron operation.

The absolute cpu-times which are necessary for the compu-
tation of one eigenfunction assuming that the tapered section
is geometrically subdivided are also given in Table III. The
computer code has been implemented on a Convex C3840
vector computer, where vectorized NAG routines are used as
far as possible. The computation of one eigenfunction of a
cavity which is subdivided into 64 steps, which in general
may belong to different tapers, requires about 2 minutes cpu-
time. In a field expansion method, typically 100 eigenfunctions
are needed which amounts to a total cpu-time of 200 minutes,
which is quite high. But one has to keep in mind that once these
eigenfunctions are computed for a cavity they can be stored
and may serve as expansion functions for many applications.

Three azimuthally independent irrotational electric eigen-
functions of the complex gyrotron cavity shown in Fig. 1
are presented in Fig. 9. The cavity consists of one step
discontinuity and three tapered sections which are subdivided
into 3, 5, and 32 steps. The computation of each of the
eigenfunctions takes about 1 minute cpu-time.

In Figs. 11 and 12, the contour lines of the potentials corre-
sponding to some irrotational magnetic eigenfunctions of the
standard gyrotron cavity shown in Fig. 10 are presented. The
eigenfunctions shown in Fig. 11 are azimuthally independent

whereas a second order azimuthal field variation is assumed
in Fig. 12. The tapered sections are geometrically subdivided
into 24 and 32 steps. According to the boundary condition
for irrotational magnetic eigenfunctions [7]., the contour lines
have to be orthogonal to the boundary of the cavity which is in
good agreement with the plots. Note that the contour lines of
the eigenfunctions presented in the first two plots of Fig. [11]
are approximately vertical. Consequently, the axial magnetic
field is approximately constant throughout the cross section of
the cavity. This illustrates that it is necessary to take the “TEqq
waveguide mode” into account in each individual line section.

Finally, the modal expansions with and without irrotational
electric eigenfunctions are compared for the standard gyrotron
cavity which is excited by an impressed electric current
density. For the sake of simplicity, it is assumed that the
current density is given by an azimuthally independent radial
component .J, only. In this case, an azimuthally independent
TM field is excited. In the transverse direction, the current
density distribution is assumed to be proportional to a Gaussian
distribution with a standard deviation of 30% of the diameter
a2; whereas the corresponding axial dependence is given by a
half sine wave. According to Fig. 13, three cases with different
lengthes of the current density distributions are investigated.
In all cases, the amplitude of the current density is chosen so
that the total current is kept constant.

Fig. 13 also presents the distributions of the transverse
component of the electric field £, along the axis of the cavity,
which correspond to the three current density distributions. The
solid and the dashed lines correspond to the modal expan-
sions with and without the irrotational electric eigenfunctions,
respectively. Both expansions are carried out with the same
spatial resolution. For a smooth current density distribution,
as in the first case of Fig. 13, the agreement between the
two expansions is excellent. On the other hand, as the current
density distribution becomes more impulsive (as presented in
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the second and third case of Fig. 13) the expansion without
irrotational electric eigenfunctions is characterized by strong
oscillations in the vicinity of the source (Gibbs phenomenon)
whereas the expansion including these eigenfunctions is still
well-behaved.

V. CONCLUSION

The irrotational electric and magnetic eigenfunctions of
complex cavities have been calculated based on the subdi-
vision of the structure into cascaded step discontinuities. In a
circular waveguide system, it has been demonstrated that the
geometric subdivision of taper sections leads to a numerically
efficient formulation. For several cavities, numerical results
have been presented. The validity of the computer code
has been illustrated for a spherical cavity. Moreover, it has
been shown for a standard gyrotron cavity that the accuracy
and the numerical efficiency of the modal expansion of the
cavity field is improved by including the irrotational electric
eigenfunctions in the analysis.

APPENDIX A
The resonance modes of a spherical cavity are well-known
[5]. Modes which are either TE or TM to the radial coordinate
7 can be derived from the radial component &, of an electric
or magnetic vector potential, respectively, which is given by

bons = i e {Sn )

where J,(kr) and P/*(cos®) denote the spherical Bessel
function according to

A [ Tkpor
Jn(knq’r') = qun+(1/2)(knq’f')

and the associated Legendre function of the first kind. The
quantity k,, is the resonance wavenumber. The radial com-
ponent of both, the electric and the magnetic vector potential
satisfy the differential equation

(A2)

=0.

(V> +k2,) 5";” (A3)
Since the potential ¢,,,, corresponding to an irrotational
electric eigenfunction fulfills the Helmholtz equation, @,nq
and &p,ng are related by

_ gmnq

Pmng = .
4 r

(Ad)

Due to the boundary condition (lc), the eigenvalues p,, of
©mng ate given by the characteristic equation

In(Prga) =0
where a denotes the radius of the conducting sphere. Note that
the eigenvalues of a conducting sphere are identical to those of
the resonance modes which are TE to r. In [S], some normal-
ized eigenvalues g,,a are given. A corresponding statement
for the irrotational magnetic eigenfunctions is however not
valid. In [7], it is demonstrated that the eigenvalues of these
eigenfunctions have to be distinguished from the resonance
wavenumbers of modes which are TM to r.

(AS)
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APPENDIX B
(v)

The waveguide eigenfunctions e;;” are orthonormalized

according to

(K2 / e as =6, (B1)
S0
which leads to
{2300 _ St (Xpeao [ —sin(pi)
Cai =N Jp‘( r(®) p){ cos (i) } (B2)

in a circular waveguide system. The superscripts “c” and “s”
distinguish the cosine and the sine polarized eigenfunctions
(with respect to the azimuthal component of the transverse
electric field), respectively. For p; = 0, only the sine polar-
ization exists. The quantity x,, ., denotes the g;th zero of Jj,
which is different from zero. The quantity #(*) represents the
radius of the vth line section. Note that the normalizing factor

Nl{g} which is given by

(B3)

N \/? L L Lo
' T Xpoa. Jp, Xpua.) T+6, 0

is not a function of (),

Since waveguide eigenfunctions with different azimuthal
orders (p, # p,) are decoupled it is convenient to define
p = p, = p,. Substituting (B2) into the coupling integral

of (5¢) yields
r(2)
Jp (Xp,qz 7"(_1)>

(B4)

. . (2)
{startc} T
N, l‘j Wr(l) Xp,ql(quqJ)?

, (T R
(Xp,q,)? — (7(—1)> (Xp,q.)?
N (1 - 5100)
Jp(Xp7qj){(1 +_ 6p0) .
The coupling integral is only a function of the ratio r(2) /¢(1),
Hence the same coupling matrix [B] can be used throughout a
taper if the taper is subdivided so that the ratio of the radii at

each step is kept constant. This kind of subdivision is denoted
by geometric subdivision.

Bl

i) -
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